产品列表PRODUCTS LIST

首页 > 技术与支持 > 波谱分析与核磁的区别
波谱分析与核磁的区别
点击次数:337 更新时间:2023-07-10

波谱分析主要是以光学理论为基础,以物质与光相互作用为条件,建立物质分子结构与电磁辐射之间的相互关系,从而进行物质分子几何异构、立体异构、构象异构和分子结构分析和鉴定的方法。

低场核磁共振是一种物理测试技术,它利用外部磁场和磁化技术,对生物样品中的氢原子进行测量。LFMR技术的原理基于核自旋磁矩和外磁场之间的相互作用。

当施加外磁场时,生物分子会产生核自旋磁矩,并在外磁场中排列成一定的结构。在这个过程中,一些能量较高的核自旋会被外磁场激发,形成核自旋磁矩。这些自旋磁矩在外磁场中会产生一定的磁场强度,我们称之为磁化强度。

当外磁场发生变化时,生物分子的磁化强度也会随之变化。这种变化会导致磁共振信号的产生。通过测量这些磁共振信号,我们可以了解生物分子的结构和磁化强度的变化,从而对生物样品进行分析和研究。


波谱分析与核磁的区别是什么呢?

波谱分析主要包括红外光谱、紫外光谱、核磁共振和质谱,简称为四谱。

自1945年F.Bloch和E.M.Purcell为首的两个研究小组同时独立发现核磁共振现象以来,1H核磁共振在化学中的应用已有50年了。特别是近20年来,随着超导磁体和脉冲傅里叶变换法的普及,核磁共振的新方法、新技术不断涌现,如低场核磁共振技术的发展,是核磁共振的分析方法和技术不断完善,应用范围日趋扩大,样品用量减少,灵敏度大大提高。

低场核磁共振技术的应用方向:

【食品农业】

在众多应用领域之中,食品农业应该是低场核磁共振技术应用较广泛的领域了,从国家标准的油料种子含油含水率的测定及固体脂肪含量SFC测定,再到农产品、果蔬、畜肉、海产品、乳制品等等,低场核磁共振技术都有应用。如果问低场核磁共振技术是用来研究什么的,用一个词来总结就是“水分相态",水分相态将之前大家对水分的研究(之前主要是含水率、水分活度等)扩展到了水分存在状态。

【高分子材料】

这里所说的高分子材料主要包括:弹性体材料(如橡胶)、非金属复合材料(如玻璃纤维、碳纤维、有机纤维等)、功能膜材料、纳米颗粒、凝胶等多孔材料。检测范围主要分为定量和定性研究。

其中定量包括:交联密度、橡胶及增塑剂含量、软硬段比例、氟含量等。

定性包括:硫化、固化、老化过程、降解过程、吸湿过程等。此外还有性能研究:颗粒聚合物相容性、颗粒表面改性、材料吸附性能、聚合物竞争性吸附、亲疏水表征等、分散性能等。

【岩石土壤】、【生命科学】、【石油勘探开发领域】等领域的应用,可查阅以往发布的文章了解。